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obtained by tsking s;mples from the plots. In fact, the earliest
applications of the theory were to the sampling of field experiments.
The mathematical model becomes a little more complex because of the
treatment and block éffects, but the essential analysis is the same.
For o randomized blocks experiment, let yijk be the yield from the
k th subsampling unit in the J th replicate of the i th treatment,

Then
3 +

where f‘ represents the general mean, ti the effect of the 1 th treat-

ment, rj that of the bloek or replicate, aﬁd e the residual,

1jk
The last component is separated into two parts: a part bij depend~
ing only on the plot to which the sub-unit belongs, and a part "iak
varying from sub-unit to sub-unit within the plot. If the analysis
of variance (on a sub~-unit basis) is computed, it can be shown alge=

braically that the following expectations hold.
- . 2 2
E(Experimental error mean square) = o +m LA
- . 2
E(mean square between sub-units within plotg = o

vhere m is the number of sub-units taken per plot. TFurther, if there

are n replicates, the experimental error variance of a treatment mean

(i.es, 2 mean over mn sub-units) is

02 + moz 2 02
i.. mn n mn

In such cases the cost function will frequently be of the form

(127)
ln + czmn,

where ¢y is the component of cost proportional to the amount of

C=c¢

replication but independent of the amount of s~mpling, while s is
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a comonent proportional to the number of subsamples taken. If the

cost is minimized for a specified value of the variance (126), we

find
o4
n o= —Y 1 (128)
O.D cz

This equation determines the optimum amount of sampling per plot.
The accompanying number of replications is then calculated from equa~
tion (126).

For a more complete develppment of this theory and its applica-
tion to the sampling of cereal experiments, see Yates and Zacopanay
(35). One common device is to use stratification (often called 'local
control!) within each rlotf For instance, if eight samples are taken
from each plot, the piot is divided into quarters, two samples being
taken from each quarter. The theory is unchanged except that the
mean square between sub-units within plots is replaced by the mean
square between sub-units within strata (quarters),

One further point deserves mention. In order to perform ¥ and
t tests of the treatment effects in the experiment, we need an esti-
mate of the experimental error variance ( qi +m oi), but we do not
need an estimate of the subsampling error 03 . Consequently, so
far as the drawing of conclugions from the experiment is concerned,
we can take only one subsample per plot, or we can use a method such
as systematic sampling which does not provide an unbiased estimate of
the sampling error, On the other hand, if we wish to use the results
to learn something about the optimum amount of sampling in future
experiments, an estimate of 03 is required for the use of formula
(125). Thus in the exploratory stages of sampling, it is advisable

to ensure that an unbiased estimate of 05 will be available. When
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the ontimum method of sampling has been learned, this requirement can
be droomed. For example, if expensive chemical determinations are to
be maode on the samples, all the samples from a plot may be bulked and
only a single determination made for each plot.

8.6 Alternative mathematical model: We return to the considera-
tion of subsampling in sample surveys. One consequence of the mathe-
matical model, as will be seen from Table 16, page 92, is that the
true variance between sampling units is aiways at least as large as
the variance between sub-unite within units. The model does not
allow for the poésibility that the variance xiﬁgig units might be
. larger than that Qg;!ggg ug;ts. Situstions may arise in which this
is s0. One example prgviously mentioned is that of the sex-~ratio,
when the unit is & household and the sub-unit a person, (27). The
mean-square between persons within a household is substantially larger
than thé mean square between househOIds; This happens because there
is a nogative correlation between the sexes of members of the same
houscholds, owing to the fact that many households contain both hus-
band and wife. Although it is less likely to do so, the same effect
may arise-in field experiments if there is competition between plants
within é plot.

The oxtension of our model to this case has been given by Yates
and Zacopanay (35). Alternatively, Eansen snd Eurwitz (27) suggest
the use of the intra-class correlation coefficient. Instead of (121)

we have

= f“’ + W (129)

¥y 1

i3
The quantities wiJ all have mean zero and variance 02 . Any pair of
sub-units w I PP that are in the same unit are correlated, with

S

correlation coefficient w , while elcments in different units are
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uncorrelated.
ith this model, the expectations of the mean squares in the
analysis of variance on a sub-unit basis may be shown to be as in
Table 18, which corresponds to Table 16 for the previous model.
TABLE 18.

ANALYSIS OF VARIANCE WITH SUBSAMPLING: ALTERNATIVE MODEL

d.f. Mean square Esctimate of !

'
Between sampling units (n~1) B = mi.‘-(y'i —;rnm)z/(n-l) 02{1+(m-1) p}j
. ;78

sub-units

- S = en e s aw = =

'
Within units detween n(m-1) W = Zl(yij---};i )2/n(m-1) o° (1- e) ¢!
. 1

’ !

If f is positive, B will have a larger expectation than ¥ and the re-

sults obtained are exactly the same as those obtained with the pre-

vious model., The case where B is expected to be less than W is covered

by negative values of e . Note, however, that @ cannot be less than

-1/(m-1), for such values would give B a negative expected value.

This property of the intraclass correlation coefficient is well known.
For certain applications, it is known that some pairs of sub- ‘

units within the same unit will be correlated, but others will not.

Thus for full generality we would require a model in which P 15k

is the correlation between the j th and k th sub~units within the

i th unit. The only effect of this elaboration is to rcplace P in

Tablec 18 by ‘é , the simple average of all these correlation coeffic~

jcnts. For the case of the sex ratio prese.nted by Hansen and Hurwitz,

sup»ose that the typical household consists of husband, wife, and

two children , and let Wiy be 1 for a male and O for a female. Six

possible pairs can be formed from the members of the household. The

correlation between the sex of husband and wife is -1, but there will
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be no correlation between the sexes of the five other pairs (excluding
rare cases such as identical twins). Consequently P = -1/6. It
follows that the variance between sampling units would be expected

to be about 4/7 of that within units,

8.7 The finite population correction: Thus far it has been
assumed that n/¥ is small: this should be remembered when using
previous results. We now suppose that the population contains N
units, each with;M gub-units, while the sample has n units, ecach
with m sub-units., By definition, the true variance of the sample
mean is

First, it is necessary to re-define a: and oi s, 80 that they refer
to a finite population. Consider the following analysls of variance
for the complete population:

TABLE 19,

ANATYSIS OF VARIANCE FOR THE COMPLETE POPUIATION (SUB-UNIT BASIS)

1 Defined as !
! da.f. Mean square equal to !
' !

¥ - - 42 2 2
1 ! — - . = o+ H
'Between units (¥-1) Mi§1 (yiM yﬁM) /(N-1) o, + Mo '

. ! | N M 2 1
'Within unite be- N(¥-1) B I (y,, -F,) /¥Q-1) = 03 '
! twcen sub-units i=1 5=1 J '

!

- . 2
where yiM denotes the mean of the 1 th unit. We define 05 and ob
so that the equations given in the two lines of the analyslis are
valid. With these definitions, as will be seen later, the expected

valucs of B and W remain as given in Table 16.

Thegorem 13:

M)

2

2 _ (N-n) % MN- Cw
< = Nn - + an — .(130)

v<§hm) = E(.:;'nm —§NM
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Proof: Write

.}-’nm-s;NM =(im-§.nM)+(§nM—§NM)' (131)

where §hM denotes the mean that would be obtained if the p units in
the sample were all enumerated completely. If we square both sides
and take the average over all sets of samples that could be drawn,
there will be no contribution from the cross-product term on the

right, since for gpy fixed set of n units,

E(?nm) & inM ¢
Oongiaer the first term on the right. At present we restrict atten-
tion to a fixed set of p units. If each of these units is regarded
as a stratum, the sample ffom these units is a proportionally strati-
ficd sample, eince m are taken out of every M. Consequently we can
apply the formula in Theorem 6, page 26, for the variance of the

mean of a stratified sample. This gives

| - \2 n 2
(Y Vo) - le __Lm.ﬂ)._ o s

whero ofj is the variance within the J th wait. This may be Te-

written

(Ni=m) + 1 =2 (132)
M mn wn

where ain is the average variance within these n units. If we fur-

ther average over all posgsible sets of n, it is clear that the aver-
-2 2

age of Own is S Hence

E(Y

5% . 1 G2, (133)
nm nM M mn

w

The contribution from the second term on the right of equetion (131)

presonts no difficulty, since th is the mean of a simple random
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sample of n units, each completely enumerated. Consequently,
2

BT - §km)2 = “iyiili ijoi . j} (134)

M

sincc by the definition of oi in Table 19, the variance of the mean
. 2 2.
of a unit is (ob + ow/M) .

From (133) and (134), we obtain finally

2 2
-~ - \2 )., - 2 G

2o - T = %ﬁfmzhﬂ§{%+ i }
) % . m-m) %

N n MN mn
dotg: As N becomes large, the fbrmula for the variance reduces

to

which is the same as our earlier formula (123). This implies that
the carlier formula requires n/N to be small, but does not require
nf¥ to be small.

8.8 Estimati the variance when the f.p.c. is s
The previous formula B/nm for the estimated variance also needs re=-
vision to take account of the f.p.c. For this estimate we use as
beforc the sample analysis of variance, as given in Table 16, page
2 and 02

92. However, o
w b

Sincc the n units are chosen at random out of the N and since each

are now as defined in Table 19, page 99.

m is chosen at random out of M, it is easi to see that in repeated
sarmling the expectation of W, the samplc mean square within units,
is gqual to 03 , the corresponding population mean square.

The meen value of B is less obvious. We have

Bens (3, -5 )°/(n-1),
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Write

Vi, TVt e

where §1M is the mean of all M sub-units in the i th unit. Then

. 2
2 g
E(e = M-m . wl
(ei. ) TEm = .

since this is the variance of the mean of a random sample of ;@ sub=-

units out of M. Similarly write

In equation (132) we proved that

-2
- - 2 - 2 M-m own
E ( ynm "}’nM) = B ( ‘enm) = T . p— .

Now,

AT M SCUE TR NI L
When we expand and take the expectation for a fixed set of pn units,

we have
- - (2 M= 2 2 ‘
- - + m -
b2 zi(yi ynm)g' _§_ Gom = Vo) L——)—Mm éz oy am}
Since n own =X ¢ i" we obtain, on division by (n-1),
- \2

2 {2 G -Tw’t B G- 7 ()
Mm wn

(a-1) T (ne)
By Thcorem 3, page 11, the first term on the right is an unblased
estimate of the population variance between the true means of the
units. Take the mean over all possidle selections of n out of N.

This givos

- - .2
N - .

3 jm) = 3 (Vim = Yo . Qi) 2
=1 (N-1) Mn v

w 1
G -4 4



o2
2 w
= +
%
2 2
Hence E(B) = g, n oy (135)

The rcsult is the same as for the case where no f.p.c. is required.

Ingorem J4: An unbiased estimate of V(¥ ), taking into account

the f.p.c. s is

mo N

et [ L N —%I—_LW} (136)

This follows at once from the preceding results. An unbiased estimate
of oﬁ is (B-W)/m. On subst;tuting in formula (130) for v(§nm) and
collecting the two terms in W, we obtain the result, which has been
given by Yates (36).

It may be noted that if m = M, the formula reduces to that
applicable to simple random sampling of the units, since in this
case units in the sample are being cnumerated completely. If n=N,
the formula becomes that for proportional stratified sampling, since
every unit is being sampled, so that the units serve as strata. If
n/¥ is negligible, the formula reduces to that given earlier in
this scetion,

8.9 Stratified sampling of the units: Subsampling may be
combincd with any type of sampling of the units: Similarly, the
subsarmling itself may employ stratification, or systematic sampling.
We shall not enter into these elaborations. The formulae for sube
sampling with stratificd sampling of the units will, however, be
given, since this combination is common in practice.

Let the suffix J refer to the stratum., The population variances

2 2

Obj and o

wj

since thcy may vary from stratum to stratum. The definition of

will in general be defined separately for each stratum,



Table 19 will be used in each stratum. The J th stratum contains
Nj units, cach with MJ sub-units, while the sample from the stratum

has ny units and my sub~units in each unit, The estimated population

mean per _gub-unit is

Its variance is

2 s .
T (M.N Y ) N.~ MN -
FE J> §yhma = z:(HdNJ)z (jd nJ) “by + ( JJ mJFJ)
@ux)? ! om My
2 4 3
02 ’
wd (= MJ N )‘3 . (137)
nm.n d
373

from formg;a (130). Unbiased samplc estimates can be obtained from
(136). The results simplify considerably if the variances and
sampling rates are the same in all strata.

8.10 Sub-~gubsampling: It ie sometimes advisable to carry the
proccss of subgampling a stage further by sampling the sub-units
instead of enumerating them completely. For ingtance, in certain
surveys to estimate crop production in India (32), the village is
a convenient sampling unit, Within a village, only certaln of the
ficlds growing the crop in question are selected, so that the fiecld
is a sub-unit. When a field is selected, only certain parts of 1t
are cut for the determination of yleld per‘acre: thus the sub-unit
itsclf is sempled. If physical or chemical analyses were being
nadc on the crop, an additional subsampling might be used, since

theso determinations are often made on only a part of the sample
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cut from a field.'
Results for the elementary theory will be given driefly. The
population contalns N units, each with M sub~units, each of which

has P sub-sub-units. The corresponding numbers for the sample are

n, , and p respectively. The model is

Tyge =M ¥Vt ey tagg

The variance of the sample mean per sub—sub—unit is

2 2 o
V) = —— * e+ R ~ (138)
n nm nmp

The sample analysis of variance (on a sub-sub-unit basis) is as
follows.
TABLE 20.

ANALYSIS OF VARIANCE FOR SUB-SUESAMPLING

L

! d.f, - Mean sguare Egtinnte of
) .

Between units (n-1) - B Oi +p o+ mp o%
1 w

; _

Between sub-units n(m~1) L oi +p 03

! within units
]

Between sub-sub-units nm(p-1) z o

' wyithin sub-units
1

- P e W Wt A ws mm W e W e

Congequently, an unbiased estimate of the variance of the sample
mean is B/nmp. As before, an unbiased estimate can also be Ob-
tained of the variance for values of n, m, and p different from
those used.

To obtain the finite population corrections, we define the
bagic variances by an analysis of variance for the complete pop-

ulation: e.g., the mean square between units in the complete
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population is defined to de (o§‘+ P 03 +MP o%) and s0 on. By

nethods similar to thosec in Section 8.8, we then find

7. ) =f-L - 241 . 2
V(Famp) (n -%I—ob +(‘“m?i 4 o +(__m_111.§_ - e o‘: ,» (129)

of which an unblased estimate is

1§ (¥-p) (M-m) , _n (P—p) 1
mp | n 5 weSERL. 2. . 2] (100

The extension df those fornulac to further subsanpling is obvious.
8.11 Sub i ‘ itg are 1 izgt Thus for
it has bcen assumed throughout this scction that every unit contaiﬁs
the sanc nunber M of sub-units. In practice this is often not the
casc. In o national farm survey, for exarple, the county nay de thé
unit, whilc the sub-unit is a farn or a group of farnse. The nunbors
of thesc sub-units in a county may vary conslderrbly. When M chongos
fron unit to unit, the situation is morc conplex. The developrient
of ncthods of sanpling and their varliance fornulne for this case is

due nainly to Hensen and Hurwitz (37).

Supposc that the i th unit has My sub-units. For simplicity,
we assuto n = 1 ¢ i.8., Only a single unit is chosen from the pop~
ulation. If this unit is the 1 th unit, let mi sub-unite be sampled
at randon fror it, The nean of the observations from these ny sub-
units is denotcd by §is (s for sorple), while the true mean of tho
unit is §ip (p for population)., The nern of the whole population, .

¥p is the quontity to be estinnted.

It scoms nntural to use the s~nple nean 315 as on estimate of

the populc~tion nmenn ?b. This estinnte is, however, biascd. In

repeated sarpling from the same unit, the avercge of ?is will be
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§¥P. But if we give every unit an equal chance of being the unit

selected, the average of §ip in repeated sampling will be

N
121 iip/N = §, (unweighted mean)

whereas the true population mean is

¥, = I M, yip/M' where M = T M, .
To find the sampling error variance of this estimatg, write
(Yis "‘yp) = (yis —Yip) + (Yip "‘Yu) + (Yu “Yp)

If we square and take the expectation over all possible samples,

all cross-product'termé vanish, and we obtain

2
¥ M, - m,) o
- i i ] - - \2
v = z : + X -
(F3¢) '%_ i=1 My my N z (yip T
Within units Between ﬁnits

+ G, - 7)°

; (141)

Bias.
The variance comprises three components; one arising from varia-
tion within units, one from that between the true means of the
units, and one from the bias. The quantity o? in the first term
is the variance within the i th unit, defined in the usual way.

The values of the m; have not been specified. With sufficient
information, they could be chosen go as to minimize expected coste
In practice, the most common choices are to have either all my
equal, or to have m, proportional to My, that 1is, to subsample a
fixed provortion of whatever unit is selected. Note that the

choice of the my affects only the firgt of the three components



~ 108 -
of the variance, that arising from variation within units,
An unbiased estimate can be made. If we multiply §is b&
Mi' wc obtain en unbiaged estimate of the total of the i th unit,
A further multip}ication by N¥/M provides an unbiased estimate of

ihe nopulation mean per sub-unit. We may call this .estimate §t’

gince it is derived from an estimate of the unit total. Now

-y My MYy,
(7, - %) = -
t p M M
3 mi. (yis‘ygi . NTy -2 Ty
M , n ’

where we write Ty for the true unit total, My yip‘ It follows

that 2
N o .| 2
- i o
7G) =Y T MM, -n) + . N_ 5 (2-T) (142)
Ve s T W T e 8

where T = I T;/¥, is the unweighted mean of the unit totals.

The ’5etween*unit' part of this variance (second term on the
right) arises from the variation among the unit totalg. Conse~
quently, this component is affected by variationg in the Mi as
well as by variations in the sub-unit neans iip' unless it happens
that the fwo are correlated in such a way that their product is
rather constant. Frequently, this component is so large that ¥,
has a much larger variance than the biased estimate based on the
mean »er sub-unit. Thus, neither estimate is fully satisfactory.

In this situation, Hansen and Hurwitz (37) propose that the
units ve selectéa, not with equal probabdility 1/N, but with prob-
abilitics My /M proportional to their sizes. In order to do this,
we curilate the Mi and select a random number between 1 and M,
The unit in which this number falls in the curulated totals is

the unlt chosen.
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The effect is to make the sample mean ?18 an unbiased sstimate
of ip. For, in repeated sampling, the 1 th unit will appear with
frequency ¥4/M, so that

N M

- i - -
B ( ) = z et = N
Yig =1 ¥ yip Yp

For tho sampling variance, we have

Fg = F) = Gy -9,) * Gy - 5)

¥hen we compute the average of the squares in repeated senmpling, the

i th unit is again weighted by M;/M, so that

2
N M (¥,~nm,) o
- = =42 1 T 1
V(7 ,) = B(F, V) = 121 7 0 o
M 2 o
1 (5 -73) - (143)
+3Z - yip Yp

For nany nopulations, thia variance is found to be smaller than that
of sither of the two preceding nethods, though this result need not
always hai)‘oen.

8.12 _ymg;lggl_g;agplg It may be instructive to apply these
results to a small population, artificially constructed. The data
are as follows.

TABLE 21.

ARTIFICIAL POPUIATION WITH UNITS CF UNEQUAL SIZES

1 1 ! 1 t 5 ! 1
R ! 1 M 1 T ' o 1 pu 1
R S T T T . S
! 1 t [ [ 1 1
1 0,1 ' 2 ! 1 500 ' 0.5 '
[ 1 ) t t t 1 1
-2 '1,2,2,3 ! 4 ' g ! .667 ' 2.0 !
1 1 t ! 1 I '
! ! 6 voo2¢ ! .800 ' 4.0 1
! 1 1 1 1 1

3 '3’3'4'4’.5.5
1
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Thero arc three units, with respectively 2,4 and 6 sub-units. The
reader may verify the figures for Ti’ of and §1p° The population
mean §b is 33/12, or 2.75. The unweighted mean of the iip is 2,167,
go that the blas in the first method is -.583. Its square, the con-
tribution to the variance, is .340. One unit is to be selected, and
two sub-units sampled from it. We consider four methods.
Mothod I,
Selection: unit with equal prodability, two sub-units
from 1it. .
Estimate!, §;, (blased).
thod II
Sqlegtion;;'unit with equal probability, — —& M,
sub-units from it,. ' 2
Bstimate:, §, (blased).
Mothod III,

Selectioni. unit with equal probability, two sub-units
from it.
Estinate! MM /M. (unbiased).

Mothod IV, |

Selection: unit with probability Mi/M, two sub-units
from it. _ ’ |
Estimatet, ¥, (unbiased) .
¥othod II (proportional subsampling) does not guarantee a
samplc size of. two (1t may be 1, 2, or 3).‘ The average sample size
is, however, two.
By spplication of the sampling error formulae (141), (142),
and (143), the reader may verify the following computations:.

TABIE 22,

VARIANCES OF SAMPLE ESTIMATES

! ! Contribution to variance from ' Total !
! Method ' Within Units' Between Units' Biag ! Variance '
! 1 ! .145 ! 2.056 ! . 340 ! 2.541 !
! I1 ! .183 ! 2.056 ! « 340 ! 2,579 !
vIII ! 256 ! 5.792 ' ,000 ! 6.048 !
' IV ! .189 ! 1.813 ! 000 ! 2.002 :
1 ) - 1 ' '
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Though the example is srtificial, the results are rather typical.
Method IV gives the smallest variance because it has the smallest con-
tribution from 'between units'. Method I (equal size of subsample) is
slightly better than Method II (proportional subsampling). Method III,
though unbiasged, is very inferior.

The total possible number of samples is quite small (it is 22
for Methods I, III, and IV), It is a useful exercise to verify the
total variances in Table 22 by constructing the estimates from every
possible sample,

In the spplications of these results, it is more usually desired
to estimate a population total than a mean per sub-unit. For the
estinated population total, we need only multiply the previous esti-
mates Dy M ¢ their Qariances become multiplied by Mz.

8413 Selection with arbitrary probabilitiegt! It may happen that
the sizes My of the units are known only roughly. In the sampling of
towns, wherc the unit is a block and the sub-unit a household, the
number of households per block is usyally obtained from city maps,
but such maps may be out of date or in error. To meet this situation,
Hongen and Hurwitz (37) have investigated the theory when the units
are selccted with probabilities proportional to an egtimate of size.
Their rcsults also apply to any arbitrary assignmenf of the probabil-~
ities. Wc consider the estimation of a population total, the popu~
lation being as in previous sectiong., Let Pi be the probability

assigned to the i th unit, where the P, are any set of numbers that

i
are all grecater than gzero and add to unity.

First assign 2 sampling rate t to the population, e.g., 1 per-
cent or 5 wercent. If the i th unit is chosen, we take a sample of

size ry from it, and use as the estimate of the population total

my §iS/t : in other words, the sample total, divided by the sarpling
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rates The mean value of this estimate in repeated sampling is

N -

121 Pimiyip/t .
I? this is to equal the true population total, E Miiip , we must
have

m = tMy/P, . (144)
This means that whatever probabilities are assigned, an unbiased
estimate is obtained if my is chosen as in (144), Note that the
formula requires knowledge of the true size M, for the unit that is
selected (though not for any other units). If this is not known
in advance, it is counted during the survey. Such counting is
usually known as pre-listins.

The veriance of the estimate is essily obtained. The error

of estimate is

! My M 1
—_— - MY = ¥ - ¥ o= e (7 -7 + e T SMT
T Vi ~ ¥ T F. Fig - ¥ T 5 SR 5. T

Bach square receives a weight Py. Thus

V4 -
N M o2 N M.y
- i i 191p 2
V(ngF, /) = & = (My-m,) + 3 P - My (145)
s =1 Py 1y =1 1 Py P

If Py = M;/M it will be found that this reduces (apart from the
factor Mz) to (143) for the variance when probabilities are propor-
tionate to sizes. If P, = l/ﬁ, (initial probabilities equal), it
reduces to formula (142) for the unbiased estimate when probabilities
are equal and the subsampling is proportionate.

Onc comment should be made about the "between units" contribu~
tion to the variance (last term on the right of (145) ). Unless
P; = Mi/M, i.e., probabilities are proportional to sizes, this
term is affected by variations in the Mi as well as by variations

in the unit means yjp. This means that 1if the Py are based on
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estimated sizes, wo do not quite eliminate the effect of variations
in the true slizes from the error variance. If the estimates of size
are good, however, the inflation of the variance from this source is
likely to be small.

| 8.14 Application in voractice: Once the idea is grasped, sampl-
ing with probabllity proportional to estimated size is not difficult
to apply in practice. Suﬁpose. for instance, that the population
contains six city blocks, of which one is to be selected. The sub-
unit is the household, and we want to sample 5 percent of the popu--
lation so that t = 1/20. The expected numbers of households (e.n,o0.h.)

in the six blocks are as shown below.

Block E.n.o.h. Cumulated
1 10 10
2 30 40
3 17 57
4 25 82
5 23 106
6 16 121

We draw a random number between 1 and 121: let this be 96. The
block selected is no. 5, which covers the range from 83 to 105 in
the cumulation.

The sampler visits block no. 5, and counts all the households
in it. Suppose he finds that there are actually 31 households. The
number that he has t0 enumerate can be found in either of two simple
ways. Since Py = 23/121, and t = 1/120, we may apply (144) and

obtain
1.31.121
20.23

n, = = 8, to the nearest integer,

Alternatively, we may note that the sempling rate for the
block chosen, that is, my/M;, is equal to t/Pi. This is known
before the block is pre-listed. Thus the enumerator can be told

in advsnce the rate at which the bdlock is to be subsampled. This
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method is useful when an 'every k th' systematic sample is to be
used for the subsampling. In the present case t/Pi is equal to
121/20.23, or about 1 in 4. After numbering the 31 households which
he finds, the enumerator could choose a random number between 1 and 4,
say 2, and visits the housecholds numbered 2, 6, 10, 14, 18, 22, 26,
and 30 on his list, The reader will notice that we 4o not choose
my; 80 as to satisfy (144) exactly, because of the restriction that my
must be an integer. The disturbance from this cause will usually be
negligible,

Sometimes no estimates of the Mi are available before the sample
is taken, The best procedure in this case depends on several factors,
of which tv}o are (1) how much it costs to obtain estimates of the My
and (ii) howvmuch the.Mi actually vary. If the cost is high, it may
be best to draw the My with equal probability and use the biased esti-
mate of the population mean or total. An interesting case of this
problem is described by Jessen et al (38). They were sampling blocks
in Greek towns, and in some towns had no usable estimates of the
numbers of households in the blocks. They considered three procedures:
(1) drawing the blocks with equal probabilities, (ii) making a rapid
preliminary cruise of the town in order to tie together small blocks
80 as to build artificial blocks that appeared to have roughly the
game nwibers of households. Also, blocks which obviously had no
households could be eliminated in the process of cruising. The object
is, of course, to diminish the variations in the Mj. Blocks would
then be chosen with equal probability. (111) Cruising the twon
slowly enough to permit estimates to be made of the number of house-
holds in each bdlock. Blocks were then chosen with probability pro-

portional to estimated sizes.
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8.15 Zxtension to stratified sampling: The case which we have
been discussing is not very practical, in that only one sampling unit
is chosen from the population., As these methods are applied in prac-~
tige, the populatien is divided into strata, one unit delng chosen
from gach gtratum. The formulae for the sampling error variances are
built up from the preceding formulae, which will of course apply to
a single stratum. The suffix J denotes the stratum. The following

notation is analogous to that previously used.

MiJ number of;sub—pnits in 1 th unit of J th stratum.
M'j total number of sub-units in j th stratum.

ms g number of suﬁ-units sampled in i th unit of j th stratum.
NJ number of unité‘in J th stratum,

°§J varianceiwithin 14£h unit of J th stratum.

ﬁijs sample mean in i1 th unit of j th stratum.

yijp true mean of i th unit of j th stratum,

ijp true mean of j th stratum.

¥ unweighted mean of ¥ within j th stratum.
yju g yijp J |

We quote the error variances for three procedures for estimating the

population ;ogal;
I. Units chosen with equal probability 1/1’3 within strata. The

estimate is

§ MJ ii.js (biased).
N N
2 i 2
M J i, , - ) o . J
vez ) 2 I d e (yijp's'du)z

3 NJ i=1 My mij i=1
- - \2

(Fyy - yJ,p) (146)

II., Units chosen with probability proportional to relative size

within strata. PiJ ='M1J/MJ . The estimate is as in I (unbiased).
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N3 o2 Ny
= M T (Myq - myy) + 2 Mg (Fyaw - F )2 (147)
TS Nl TR T T e T Yy

III, Sampling rate tJ in the J th stratum. Units chosen with
arbitrary provabilities Pyy. (adding to 1 within each stratum),

myy taken as tJMiJ/PiJ « The estimate is

] § ny }1Js/tJ (unbiased){
Y3 my | o g iy Tijp
J 1= Py my o 1m0 N py

N | | _\ s
| | - MJ ng) (148)

When probabilities are proportional to actual or estimated size,
the restriction that only one unit be taken per stratum is not trivial,
If more than one unit is chosen per étratum, it is impossidle to keep
the probability proportional to_Size unless sampling is done with
replacenient or by some equivalent device. The simplest method is to
ugse an 'every k th! systematic sample. For instance, suppose that
in tho ecxample of Section 8.14 we wished to sample 2 of the six city
blocks. Since the e.n.o.h, in the population is 121, we could take
k = 60, and choose a random number between 1 and 60, say 43, 7The
biocks chosen are those that contain households 43 and 103, i.e.,
blocks 3 and 5. However, we have in effect divided the population
into two strata and taken one unit from each. Conseqﬁently. with
these mcthods it is not possible to compute an unblased sample
ecstimate of the error variance. If pairs of strata can be formed
such that there is not much difference between the members of each
pair, an estimate that is serviceable may be made from the differ-

ences botween the two sample means in each palir.
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OTHER METHODS OF ESTIMATION COF A POPULATION TQTAL

9.1 Reather naturslly, persons engaged in sampling have favored
methods of estimation that cen be computed ersily sand rapidly. Since
queétionnaires often contain & large number of questions, there is a
great odvontoge in methods of estimrtion that require little more
thon simplc addition, which crn be performed on an IBM tabulator,

The potentialities of complex methods of estimation heve been little
oexplorcd. The galn in sccuracy from s superior nethod of esfimation ‘
nny, however, be securcd falirly cheaply, since only the finsl corpu-
tetions arc affected, nnd there ere likely to be cases, with certain
irmportont ¢stinctes, whoreAquite elnborate cnlculations would be
Justifiod if o substentirl incrosse in rccurccy resulted. Two nethods
of estination which require more calculetion than the pnesn per s.u.
eétinatc, but which usurlly rcsult in incrensed accuracy if applicable,
rre the rotio #nd the linerr rezression nctho&s. In these nethods,

an ~ruxiliocry vorinte s corrclafed withlz, rnust be obtained for cnch
unit in the semple. In »ddition, the population totol Xp of x nust

be known. In prectice, x is often the value of ¥y on sone previous
occnsion when o complete census wrs taken., The ~in in both nethods

is %o obtain increased accuracy by toking edventrge of the corrcla-
tion between y end X. We consider first simple randon sarmpling.

S.2 The ratio estinate: For the populatiocn total, this esti-

nate, which is simple to compute, ist

- S
Y = = xp (148)

wherc Yg, X nre the sanple totals of y rnd x. The conperadle

estincte bosed en the nean per s.u. is, of course, N ?n . Or N Ys/n.
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~

Cheoren 133 The verience of ¥p in large samples is given approximately

as —
v(ty) =! ) |12 +m% B -2 fo o (149)
& n y b x P y X
where.liP = —EEL— is the nomulation ratio of y to x and /4713 the
P

correi-sion coefficient between y and x. Formula (149) can be shown

to Ve alisvraicelly identical with

5 2
‘\ v o c .
N(Yg) k ) N'n Y+ X - _2cov x| (150)
.'.2 ' - e - . -
Yo Xp 5 %

- Sketch of -roof: The result holds as an psymptotic approximation when
n is l-r e and.n/N not too large. & rigoroﬁs proof requires fairly
advancec. ﬁathematicé. The foilowing argument is not rigorous in that
it does not justify the discarding of certain terms in the analysis.

v

“n -
v = N
a.R E Xp
n
¥, t oy
D
= = N ip
oy + A
%p X
¥ -1
= ——— N % + AY 1+ Bx
Kay P
= UF, 1+ Ay 1+ Ax -1
Yo X,
= HF, [1+ £y - £x approximately, this being
I - 'x"
Ip P

the firs: %Serm in a Tarlor series exmansion. Therefore,

ES

(YR) = N yp since E (ay) = B (ax) =
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iy = pot AY
[YB - .e..(Y:;E] Ny, | = -
¥p

vi.ere

Now

o 7

- (oy) = (F, - 7))

. 2 - oy
- (A:‘,r) = NNP n v : etc.

Thercfore, the varirnce of Yp is approxinctely

2
V(¥) = E E{R—B(zﬂ)]z = _n \/ N-ny | -; - z‘ch.(.y xh
/ \ A ) » % /
9.3 Estination fron » sample: In the estim:f.ion of the variance
of YR fron a senple, 02 is estinated by s? = -z'-%—'j-—?—a—, ci is
estinated by

-2 ‘
si = -—2—(—’-[—-——:-)—- and the coverisnce of y and x is esti-
n - i =
nated by
‘ s = Z(y-¥) (x=x)
yX n~-1
of YR bcconcs

. Therefore, the estinated variance

/ 2 2 \/ 2
s 2 s
V(Ty) k . N’“ / 32’ vy - T} (15D)
n % yn *n

Altcrnotive forns thrt arc sonctines ensier to compute nay be

doveloped. Fren (151),

—_— —_— 8 (152)
R n y -2 -fxn yx
We nny writc Ry = §n/'in, cr YS/XS, for the semple ratio. Further,

1t is crsy to verify that (151) is the some as

N(N-n) 2 2 2

v = — + Tx, -2R_Z (153
(YR) ~(oc1) [’2 Y5 Rg x, g 2 Vg Xy )
where the sums are uncorrected sums of squares or products cver the

serple. This is often o conveﬁient fcrn for calculation. We ray



nlso write

9.4

egtinatos The variance of the population total, as estinated by tho

mean HOT SeUey 18

- N(lion) / %

:

o ¥,) \* (155)

v

Henco from (149), V(;B) is less than V(N ) if the following in-
- : n

equality is true: i

2 2 2 2
+ - v
oy R” o 2 R_ f?c) o <o

or _ ;-
Y.
N . 2
, 24/9yx Oy ox§> oy ( P ‘)

° > % coefficient of varioticn of x
fyyx cocfficient of variation of y

In gonernsl, if the ccefficient of veriation of x is greater than
twice the coefficlient of veriation of ¥ then the ratio method will
be lcss efficient than the mesn per §.u. nethod. If x is the value
of y on some previous occasion, the twc ccefficients cf variation
nay be about equal. In this case, the rntio estinate is superior
iff gxceeds —2L- .

Theoren 16: The ratic estimote is a "best unbiased linerr
estinnic® if two conditions are satisfied (Ccchren, (39)):

(1) the relatlon hetween y ond x is a straight line through
the origin, snd

(i1) the varience of y about this line is proportional to X.
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Proof:s Ve nssume N infinite. The nathenatical nodel is

y=gx+e,
whero ¢ is a randon veriable with nean zero sand varinsnce 4 x.
Hence, - - -
pERXR T e
=B x, (since ep = 0)
By Markoff's theorem (40), the best linesr unbiased estimate of

§b (1.e.y B §$) 1s-b\§p where b is the least squares estimate of

B. This is’
b = Z¥IE  hero
Zw x2
1 - 1l
w = =
02 A X
e
Hence, -
P = zy = n
Ix 3
n

In exploratory work, a graph plotting the sanple values of y
against x is therefore useful in considering whether the ratic esti-
nate ls likely to be the best avallabdle,

Where conditions (1) and (11) are not satisfied, the distribu-
tion of the ratic estinmate in small samples hes not yet been expressed
in convenicent terms, despite numerous attempts, Unless condition (i)
holds, the estimete is hiased, Hasel (43), though the bias is usually
negligit®le rcleative to the sampling error.. In large samples, the
distridution tends to normality with the approximate varirnce ex-
pressed in forrula (149). Unfortunntely, no sinpie rule seens to be
aveilable for giving the linits of error in the approxinate formula.

9.5 Other aur The previous

discussion was concerned with the ratio estinate as a means of
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estinating the porulaticn toctal of e Often the purpose of a samnle
is to cstirate rotios. For instance, if the unit is a household, we
night wish to cstirnte the scx-ratio, cr the fraction of the popula-
tion with ages hetween 5 and 10 yoars. As an estinate, we can use
R, = YS/XS, where Y_ is, 88, the nunber of rersons in the sample
who are between the ases of 5 and 10, and X8 is the total number of
persons in the sample. Note that hoth X8 and YB will vary from housew
hold to household; 80 that'the Previous anrlysis and formulae apply
to this ratio, Of.cqurse! we onlt the factor Xp from the estimate,
and divide the vnriance formulae (150) - (154) ty Xi, since for such
cascs we wagt the variance of RS itself,

Ratio ostinate§ are.often useful when we have a large unit which
contains a varying nunter of su™units. For exanple, the unit might
conslst of all ferns whose fnrnsteads lie in some area, these areas
being delineated on a nap so as to cover the population, The sarple
contains n areas, To es£imate total farn incone, we could take the
arithnotic nenn of the total farm incomes in the different areas,
and nultiply by N, the populaticn numher of aress. If the numders
of farns jer area vary greetly, totol farn incone per area nay also
do so, with the result thot this estimate has a high varisnce. If
the total nunber of farms in the population is known, an slternative
estinate is to divide the total farn income in the sanple by the
total numbtor of farns in the sample, and nultiply bty the total number

of farns in the populrtion, This estinerte is a ratio estimate, since

it is of the form (YS/XS)XP, where x, the nunber of farms, is » ran-
dcn variable from ares t0 area. Consequently, in cemputing the vor-
irnco of the pean per form estinmnte, we nust use the fcrnulae appli-

cable to o rotio estinmate. This fact has sometimes heen overlooked.
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9.6 Ratio gst;ggtgg in gstratified gamnling: There are several

ways in-whilch a ratio estimate of a population total Yp can he made.

One is to make a separate ratio estimate of the total of each stratum
and add these totals. If Ys:]’ st’ are the sample totals in the J th

stratun and Xp is the stratum total for x, this estinate

J

=3 YsJ X ,=% i“-’ ¥, ¥ (156)

It 1s clear thet no assumption is made that the true ratio remains
fixed from stretum to stratum: the estimate postulates, however, a
knowledge of the separate XP'J ..

Since scnpling is independent in the different strata, the var—

iance is found éinply by sumation of terms as given in fornmula (150),

This gives
2 2
V(YR y =z EJ_ f'rad /NJ-’-n‘1  Oyy . O:J ) 2 cov Xy y.1
1 P . - - . -
7 KNJ Yi.-; J " ¥p3 *ps
which nay be written as
N, (¥,~n.) i
= J 73 2 2 2 _ .
V(Ias) § n, cy;j * RI.-J %xJ | QRP.M '3 %3 x3 (157)
Y. '
where RDJ = ) is the true ratio for the stratunm,.
X
DJ

An nltornative estimate, derived from a single combined ratio

has teen used by Honsen, Hurwitz, snd Gurney (41). This is

>
I — T, /
J TN,y
Y. = X = J Ind ¥ %, (158)
Re - ) - *p
N * N, X
v 9 x J nd
n sJ '



W : = = v . g o= I ¥
rite w ZNJ ynd/n P, N % /XN,

Then E(En)=§p B (F)=3% .

If we apply the argument in Theorem 15, page 119, we find

v ;—n'_ XP) = N2§'§ Vfﬁn) + v-(‘;n) ) 2 ij f‘ﬁn )
n £ % =y, |
2 -
But V(" ) = 1 TN (N o ) oyd
* % ‘ Nz J J d -—-—-—-nd . s

with corresponding results for V(?n) and the covariance.

Hence’
2 2 .
Wy Y=%5% % N (NJ - n;_)_-] %3 . ®xJ _ 2cov (yx) (159)
Re yP n 3;2 -x'z F o=
J p D P P

Formula (159) can be shown to be algebraically identicel with

Ny (Ny-n,)
V(Yac) z ng [oyd M R A3 %3 oxa ‘ (260)

Formula (160) differs from (157) only in that the single ratio

Y
Rp = XP rcplaces RI"J' To compare (160) with (157) we can write
P

VY ) = WY ) +2 N__..._"(NJ'“J) @2, -8 o, - 208, ~R)D, o4 O
Re’ ' “'Hs nj v " T’ Yx3 T %J p(o.‘] vy "x)d

NJ (NJ—n")

= v(YB.s) +Z ey

ERPJ*RP)Z Oi.') * 2(RPJ.RP) ((03 %3 %x3

" 3 °i,;)}
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The last termon the right is usuelly small. (It vanishes if within
each stratum the relation between y and X 1s a stralght line through
the origin). It follows that unless Rpj is constant from stratum to
stratum, the use of 'a sejarate ratio estimate in each stratum is likely
to be more accuraste. The advantage appears to be snall unless the
veriation in RPJ 1s merked,

For sample estimates of (157) and (160) we substitute samplo
estinates of Bpj and RP in the sprropriate places. The sample mnean

2

sguares 32 and s

N4
and the sanple coﬁiriance for the term
D e /Cﬁ ay

are substituted for the corresponding variances,
o that
It will be noted/

| 3 oxj'
in general, the sample nean square and covariance must be calculated
Separately for each stratum, .

Examplel For illustration, we use the detn from the Jefferson
County, Iowa, study discussed on p. 35, For this examile ¥y refers to
acres in corn and x to acres in the farm. The population is divided
into two strata (instead of seven as in the original example), the
first stratun containing ferms of size up to 160 acres. Ve assune
a sanple of 100 farms. When stratified sampling is used, we assune
70 farns taken from stratum 1 ~nd 30 from streotunm 2, this being
roushly optinun allocation in the sense of Neyman. The necessary
data arc ~iven in Teble 23.

TABLE 23.

DATA FROM JEFFERSON COUNTY, IOWA

t S ' .
trata Size 2 2

. i
Fak o v N .
' (forn acres) 3 Oy Oyxj Oxj Bos 1
!
L1 0~160 1580 312 49¢ 2055 .2351 |
. 2___over 160 430 922 858 7357 .2019 !
. For conylcte vop, 2010 620 1453 7619 2242 '
! - - 2 1
Strata =} !

g Otra Yp3 X3 ng Qy Wj/nj vy vjl
’ .
.1 19,5 82.56 70 .008828 194 193
. 2 51,63 264,85  _30 001525 887 907,
1

For c.p. 26.30 117,28 100
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We consider five nethods of estimating the jopulntion menn corn acres

ner farne The f.p.c. will be ignored.

(1) Simple rendon sample: mean per farm estimate.

2
o)
vV, = —%. = 80 . g0,
1 n 100 20

(i1) sirmple rapdon sarplet rotio cstinate.

=—-L. 2+ -
Vé - oy R 2 Rp o

= —-L— [ezo + (. 2242) (7619) - 2(. 2242)(1453]

==='{5.,51

(111) Stratified randonm semple: nesn per farm estimate.

2
N
1 .-.-..‘1..—2 h 2:
Vs = b pj oyj = Q:j O&j 4.16,

(iv) Stratified random samplet ratio estimate using o separate
ratio in each stratun.

2 2 2
V=% Q {E;J + de oy = 2 By yx;] = Q4 Vy = 3.07.

(v) Stratified random s~mpling: Retio estimnte using a combined
ratio.

Z Q {: + R c - 2R oyx;] =2 V} = 3.09

The relative information obtained by the various methods can be

summarized os follows:

(1)
(i1)
(111)
(iv)
(v)

Senpling Method Method of Estimation R, I,
Sirplc randon Mean per s.u. 100
Sirple rendon kntio 177
Strotificd rendon Menn per s.u. 149
Stratificd rendonm Separate rotio 202
Stratified rendon Conbined rotio 201

The resulte bring out nan interesting point thest is of rather
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seneral ~;-licrtion. Strotificaticn by size of farnm accomplishes the
snane purposc ns the use of a ratio estinate on farm size, nanely to
eliminntc the effect of vnariations in frrm size fron the s-npling
error. For instence, the gain from a ratio estinate is 77 percent
when simplc rendonm ssamrling 1s used, but is only 35 percent (202
agzainst 149) when stratified sampling is used. In f?ct, in the orig-
inal exemplc on p. 35, where seven strrta were used, the verisnce of
the pean por farm estinate was seen to te 2,90, which is lower than
any of the varisnces above. -With seven strata, there 1s no further
gnin fron the use of a ratioc estinate over a mean per farm estinates

Consequently, in the‘design.cf sanplés one often nmay choose
whether tcbintroduce sone faﬁtor into the stretificaticn, cr to util-
ize it in thec method of esfimaticn, or rerhans to use it in both ways.
The bost decision will depend on the circumstances. Kelevant points
are: (1) some frctors, e.g., fecerrphical locntion, are more easlly
introduced into the stretification than into the méthod of estimation,
(i1) the issuc depends on the relation between y and x. All simple
nethods of estinmntion work nmost effectively wi£h a linear relation,
With a complex or discontinuous relation, stratification nay be more
effective, since if there are enough strata, stratification will elin-

inate the effects of almost any kind of relation between y and X.

9,7 Optimun Allocation with a ratio estimate: The optimum allo-

cation of the n‘,J nay be different when a rat;o estinate is used than
when a rcan per s.u. is used. In discussing this point, we shall use
forrmla (157) on the assumntien that in practice, it will differ
littlc from (160). The quantity (c?d + Rij cid -2 RPJ (93 %3 de)
1s the verisnce within the J th stratun of the vaeriate d = (y - RpJX)'
This variance will be denoted by o2 . If (157) is ninimized subject

aj
to a total cost of the form Z Cy Ry it is found that the nJ nust be
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N ch
chosen sropnerticnal to J ¢ Wwhereas with a nean per s.u.

=l

estinate, n, 1s chosen proportional to .. ¢ _ .,

J

In the case where the ratio estimate is a best unbiased linear
estinmate, % will be proporticnal to,/ x . The nj would then be made

proportional to NJ x _
pd « In other cases the variance of
v 3

d may be morec nearly proporticnal to x°. This leads to the alloeation

N, x .
of ny oroportional to ___f__Eﬂ_ that 1s, to the stratum total of x. ,

vfis

divided by the square root of the unit cost. An example of the latter
case is discussed by Hénsen, Hurwitz, and Gurney (41) for a sample de=~
signed to estimate retail store sales, 7

Exarplet The different methods of allocation can be compared
using data collected in a complete enumeration of 256 commercial
peach orchards in the Sandhills area of North Carclina in June 1946.
The purposc of this survey was to dotermine the most efficient sampling
procedure for estinating commercial peach production in tﬁis areae
Information was obtained on the number of peach trees per orchard and
estimated total peach production., The high correlation between these
two variableos suggested the use of a ratio estimate. For this illus-
tration, thc arca was divided geographically into three strata. Tho
nunber of pcach trees in an orchard is denoted by x and the expected
production in bushcls of peaches by y. Only the first ratio estimate
Yzs (boscd on n scparste ratio in cach stratum) will be used since the
principle is the same for both types of stratified ratio estimatcs.
Four diffcrcnt methods of alloertion will be compared: (1) ny pro-

portional to Ny, (11) ny proportionel to Ny o, (111) ny proportional
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to N, /X a, (1 s
° ¥y v/xbj , and, (iv) B, proportional to Nj Xpje A sample size of

100 will be considered.

sumnarized in Table 24,

TABLE 24.

' DATA FRCM THE NORTH CAROLINA PEACH SURVEY

The data needed for these comparisons are

!'Strata o?

1

! 1 5186
.2 2367
! 3 4877
'

'Total 3898
1

'S , ¥

X trata 3

! 1l 47

! 2 113

! 3 91

1

!Totrl 256

'

o

yxJ

6462
3100
4817

4434

(1)

13
46
36

100

2
g

¥d

8699
4614
7311

6409
N

%3
4384
8016
7781

20181

o o ¥ R

xy y3 3 J J
72,01 93.27 53.80 69.48 1.29133
48,65 67,93 31.07 43.64 1.40475
69.83 85.51 56.97 66.39 1.16547

62.43 80.06 44.45 56.47 1.27053

(11) %, Nf/::;j (111)

22 7.33 344.5 20
40 5.57 6567.3 39
33 7.56 687.1 41
100 20.45 1688.9 100

v

]

1

J '

658 '
573 '
2706 '
1

1433 !
t

N,% 1
oy WY
2629 221
3666 32!
5184 46!
t

11379 100!

The upper part of the table shows the basic data. The lower

part zives the cnlculations needed to obtain the four different types

of allocation. The actual values of the nj for each type appear in

the colunns headed (i) - (iv) respectively.

From (157),

V(YRS) = §

Note thet tihe quantities V

Nj (NJ-nJ)

n

J

2 2

_ 2
VJ » where VJ = Oyj + RpJ oxj -

R .
2 Ap Oyxj

are the same for all four allocations?

J

they are ziven at the extreme right of the top half of Table 24.

The verionces and relative informati on for the different methods )

are shown in Taoble 25.
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TABLE 25,

COMPARISON OF FOUR METHODS OF ALLOCATION

"Methol of Allocation Variance Relative!

t

t n, prouortionsl to Strats Infornation
! 1 2 3 Total !
]

1(1) N J 49,824 105,833 376,215 531,872 100

!

: (11) W 35,144 131,847 343,446 510,437 104

o
J "y
1{114) NJ ./SEPJ 41,750 136,964 300,312 479,026 111
[ §

t(iv) Ny 5593 35,144 181,710 240,888 457,742 116
t

- ew P @ R wd = oy W s

Therc is not o great denl to choose between the different allo-
cations, as would be expected gince the nJ do not differ greatly in
the four mcthods., Methed (iv), in which allocation is proportional

to the total nunber of peach trees in the stratum, is the best.

9.8 Ihe linear regresgio tinate: We assune that the sanple

is a simple rondon sample. To utilize this estimate, we first cone
pute from the sample the lenst squares regression coefficient b of ¥y
on x, where

. - _ _ .2

b=32 (y-y,) (x—xn)/z (z=x))
The estimate of the population mean of y is then taken as

- - (‘Q - —
1r " {7 * (R x) } (161)

The samplec arithmetic mean §n 1s adjusted for the difference between
the mean value of x in the population end that in the sample. The
estinate rcquires a knowledge of the total number N of units and of

the population total of x.

9.9 Yariance of the estimate: To develop the elerentary theory,

we assunme that § is infinite and that

y=a+8 (x-'ip) + e, (162)
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where e is o rondom variadble with mean zero for any x snd constant

variance 02 .

It follows fron (162) thrt §r = a, Further algebraic consequen-

ces of (162) are

§n =a+8 (in-ip) e (163)
v =p+ Zelx®) (164)
z (1:---?:11)2

consequently, the error of estinmate,. (iLr-}p). will be found to be

Ze(x-~ in)

(165)
T (x- iﬁ)z

sn * (ip ~ %)

If the x"s are regarded as fixed from sample to srmple, this is a
linerr function of thé e's, Since the mean value of e is zero, wo
conclude that the regression estimate is unbiased. From the fornula
for the varionce of a linerr functioé, the varisnce of the estimate

works out as

%, - )°
.V(S;Lr):"i A . 2T T (166)

2 2 - - \2
o5 (1 - 2<) - n(x, - x,)
n 2 (x—in)z

-
-

(167)

wherefgis the correlation coefficient between y =nd x.

The serple estimate of this varisnce is obtained by substituting
for 03 (1 = P2) the mean square of the deviations of y fron the
serple regression on x (following the usuel regression rule, we assign
(n-2) derrees of freedon to the sum of squares of deviations).

It will be observed in (167) thet the veoriance depends on the
sct of X vrlucs that heppen to turn up in the sanple. This fact does

not hinder tho practicel use of the forrula, since all the x values
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that appear in (167) are known when the sample has been drawn. For
comparison with other estinates, however, the average variance of the
regression estimate under random sampling is needed. From (167) this
clearl& depends on the form of the frequency distribution of the x!s.
The rean value of (167) nay be expanded in a series of inverse powers

of n, the sample size. Retaining the two leading terms we obtain

2 2 2
- _ oy (1 - %) 3+ 2y |
v = 1l
(yir) - 1+ _%- + — (168)

2
where ; is Fisher's (42) measure of rclative skewness (1'? = ké/kg)"
If the x's werc normally distributed,qll would be zero, and the exact
value for tho tern in brackets would be (n-2)/(n-3)..

If I is reasonably large, we may regard the factor in brackets
as unity. This gives
- 2 2
oy (1 -p%)

V(§£r) = “‘-:;~——- (169)

The nreceding theory is rather restricted in its scope, since it -
assunes (1) that the true regreseion is linear,. (11) that the devia-
tions fron the régression have a constant variance, =nd, (111) that g
is infinite. With regerd to (i) and (i1), it mgy be shown that if n
is large cnough so that terns in 1/n sre negligidle, formula (169)
still holds even if the true regression is not linesr snd the residual
variance depends on x. (Cochren, (39) ). For small values of n, the
preceding theory would require some modification.

When the finite size of populstion is taken into account, the
resression cstinmete is slightly biased, though the bias is unimportant
so f~r as practical use is concerned. The effect on the varisnce is
epproximatcly to multiply it by the usual factor (N-n)/N,

The prcceding discussion referred entirely to the estimation of

the population pean. To estimate the populstion total, we multiply
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the estinnte of the mcen by N and its varisnce by Nz.

9.10 Conmparison with the ratic estimate nnd the nean per g.u.:

For thesc comparisons we assune the sample size n sufficiently large
g0 that forrula (169)‘may be used, and that the approximate formula
for the voriance of the ratio also is wvalid., The three comparable
varisnces aresd

- Nen 05 1 '{92)
V(yir) = 5 . (regression)

n

2
+ Bi ox) ’ (ratio)

(3 Ben) (22w
?h) Yo (oy 2 o oyx

(N-n) 02

v‘
(¥, "

(nean per s.u.)

It is obvious that the variance of the regression estimate is
gmaller than that of the nean per s.u. unless,6’= 0, in whieh case
the two vorlances are equal,

Further, the veriance of the regression estimate is less‘than that

of the ratio e¢stinnte if

2 52 2 2
- < -2R +
cy e < 2 o poy o Rp G o

where we have written ﬁ?oy ox for Orx’ This is equivalent to

,, 2
(9} S ({-O’y"Rp Cx) .

Therefore the rcgression estimate is more accurate than the ratio

estinatc unless:

f= 3 X - coefficient of variation of x (170)
coefficient of variation of y

in which casc thc two have equal verisnces. Zquation (170) holds when-
ever the rclation between y and x is n straight line through the origing

80 that in this event, the regression and ratio estinates are equally
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accuratc, It is interecsting to note that the regression estimate is
as good os the ratio estinnte, even when the latter is a best unbiased
estinatc.

.The regression estinmate is nmore laborious to compute, principally
owing to the work in calculating b. If there is an sppreciable saving
in tine, ~n inefficlent estimate of b can often be used instead of the
least squares estinmate. If the estimate of b has an efficiency g.

(2 <1), the fractional incrense in tbe variance of the regression estie
mate of N 2p is about -iiégl_ . With large n, even a nighly ineffice
ient estinnto 6f B causes only a trivial incresse in the voriance,

\L sinmple method for obtﬁining an estinate of B has been proposcd
by Hendricks end was used by Finkner, Morgrn, »nd Monroe (29), Under
this systen, the sampling units are separsted into two apnroximately
equal groups on the basis of size. Averages are then computed for

each group for both x and y. The estinate of b then becones

3 -

where 51 and §1 are the respective means of the group containing the
larger sarpling units and 58 andVES are the means of the group con=
taining the sneller ssmpling units.

It should be remembered that with the least squores estimate of
b, onc can obtain an undiased sample estimate of 05 (1 -(72) very
quickly, wherecas with other estimates of B, the 'short cut! calcula-
tion of the scnple residual mean square dces not apply.

Bx~zmler The aceurrcy cf the regression, ratio, and riean per
s.u, estincte from a sirple rendor semple con be conpared using data
coliectod in the complete enuneration of cormercisl peach orchards

descrived on poge 129. In this example, y is the estimated peach
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production of r~n orchnrd snd x the nunber of peach trees in the

crchard, The reclevant data are os = 6409, o = 4434, oi = 38983,
yx

BP =.1.27O,(5' £ ,887, n = 100, N = 256,

2 2
- y_ _Nen 9 ( - ) 1
V(yir) - N n L n-3
256-100 ) _ 6409 (1 - .787) 1+
256 ,// 97
s 8. 40 -
= (252gé00) [}409 + (1 613) (3898) ~ (2) (1.270) (443;]
= 8,74
oz
- ¥
V(y;) = = T
o {_256=100 (
256 1oo
= 39,05

Therc is little to choose betwecn the regressicn and reotio
estinates, ng night be expéctéd from the nature of the variables,
Both technigues rre creatly superiocr to the nmean per s.u.

The relative efficiencies of the three methods of estimation

are
Mean per s.u. - 100%

Ratio - 447%

Regressicn - 465%



(39)

(40)

(41)

(42)

(29)

(48)
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DOUBLE SAMPLING

10.1 As we have seen, the use of ratio or regression estimates
requires a Imowledge of the true population mean of the auxiliary var-
iable.f. Similarly, if it is desired to stratify the population ac=
cording to the values of X, a knowledge of the number of units in the
population that have x velues between specified limits is needed. This
cemands dctailed information about the frequency distribution of x in
the population. Quite often such information is lacking, or is knoﬁn
only roughly, for x variables that we would like to use in this way.

It may happen that f can be measured relatively cheaply by a
sarples In this case, even though the purpose of a survey is to estie-
nate a nunber of y variates, it may pay to devote part of the funds
to a large proliminary.sample in ﬁhich x slone is measured. Fron this
sarple we can nake a good estimafe of the populdtion nean of f’ if a
ratio or regression estimate is envisaged. Alternatively, we can make
good estinates of the population numbers NJ In strata based on the dis-
tribution of Xe Of course, by devoting funds to a special sample for
X, we nust cut down the size of the main survey on y. Cbnsequently,
the technigue will incresse accuracy'only if the galn in accuracy fron
rafio or regression estimates or from stratification more than offsects
the loss due to the reduction in size of the main sample.

A simple application has been given by Watson (43). The problen
was to estimatevthe mean leaf area of the leaves on a plant. The doter—
nination of thc arca of o loaf by plmninmeter. is rather tedious. How=
ever, therc is o close correlation between lenf area and leaf weight,
nnd it is very crsy to deternine the mesn weight per leaf for a nunber
of leaves. The procedure is therefore to weigh all the leaves on the
Dlant (so that in this case the large sarple is the complete population)s

4 small sarmple of leaves 1s then selected for the deternmination of leaf
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arcas. These are later adjustcd by means of the regression of area on
welght. A similer application which uses eye estinates in timber
cruising hns been nentioned by Cochran (44), and applications to the
estimation of forage yields by Wilm et al (45),

'10.2 Case where the x variate is used for gtratification: The

theory for this case was first given by Neyman (46)., The following
discussion covers ruch the same ground, though in considerably less
detail,

We wish to stratify the population into a number of classes accord-
ing.to the value of Xe Let Wﬁ = NJ/N be the true (though unknown) pro-
portion of the population that fnlls in the j th stratun., The first
ganple is » rondom semple of size L, and Vs = LJ/L is the proportion
of x valucs found in-the J th stratun. Thus "J is an estinate of W_,
and the wJ follow the usual rmultincminl distribution. (We assume that
the truc nunber NJ in any stratun ig so large that it nay bo considered
infinito).

The sccond sample is a strotified ronden sarple in which y is
neasurcds? nJ units are drawn fron the j th stratun. As ususl, the

variance within the J th stratum is denoted by o?. In the simplest

case, the cost cf the two samples will be of the form
= +
c clL c,0 (171)

where N is presuned large relative to Cqe
The problen is to choose L and the EJ (and consequently n) so as
to nininizc the variance cof the estinate fo£ a given cost., We must
then verify whether the nininun variance is smaller than can be attain-
ed by the use of a single randon serple in which y alone is measured.
The first stop is to set wup the estimate and deternine its var-

{ance, The true populntion mesn is



v

T W .

y 304
Ag astin~tc ve use

T w.y .

3 Jysj

Note thot w, ond the sarple means ¥, are both subject to error. The

J ‘=

protlen is one of stratification where the stratz totals are nct known

exnctly. Write

v, =¥ +au 5 Y . =y . te, .
f 3 y ¥

J sJ pd 3

Then the error of estimate nmey be expressed as

? (wj isJ - Ws §?J)= ? (WJ ey + uy ¥yt u, ej) (172)

"Since u, r~nd e, sre independently distributed, and since each has mean

J J
value zero, it fcllows fron (172) that the estimate is unbiased.

The verience is a 1little trcublesome. When we squere (172) and
take the cxpectation, there will be contributions from squared terms,
and from cross-product terms between different strata. Consider first

the squeorcd terms. These are
ElZ ({ye,*tu,y ,+tu;e )2
j 499708 37

- - - N S N - 2
= ? [}J E (eJ) + ybj & (uJ) + 8 (uj) E (ejg} ’

all other terms venishing when the expectation is taken. This gives

2 2
s

- l 2
o5 Vo3 Wy (1-9) Wo(1-w,) o
i, pd "d b J J i 3 (173)
nj L L nj

.

Now consider cross-preduct terms btetween different strota. If

v

the forn Cj O » since srrpling is incdependent in different strata.

j and k refer to two strata, there is no contributlon from terns of
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The only contribtution is that from terms in uj uk » For the nulti-

nonial distribution,
= /
E(u'juk) ijk,L ,
s0 that the cross-products ceniribute

T -2F .y, W W [L, (174)
DJ . PJ yk 3 ki

If the niddle term in (173) is combined with (174), the reader

nay verify that these tcgether amount to
BV, (5, - 7).
. d e ?

Hence, the final fcrm of the variance is

L] — - 2
W (1-W,) 2 W, (. = 7))
Va3 {Wj + J T } ° + I i "% . (175)

3 1 L
%

The tern frec fron E is the faniliar expression for the variance when
the stratun sizes are kncwn exactly, The effects of the errors in the
large sorple are therefore tc increase the within-stratun contribution
to the variance and t¢ introduce a hetween-strotun coﬁpcnent.
A consideratle ancunt of information about the populaticn is
required in order to use this result. Zstinates are needed both of
the within-stratun verlences and of the effectiveness of stratification,
The volues of the ny and E that lead tc the minimum variance

are rather complicated. It is clear that n.j should be propdrtional to

/ W (1-W.) '
2 (-
O'j dd + --—-—L—__-.-.— .

Since the sceend term inside the rcot will usually te small compared

with the first, Neyrnar swizests taking n; proportional to WJ cj, as a
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first ajproxinotion. Thus
n,=nW,o0,) /2 W, o) .
J J 3 [z J J)
If this volue is substituted into (175), with the term in WJ(l-WJ)

igncred, wve obtain

E W, 0,)° ¥, (5 =502
Tt o= J I 4y 47 °P (176)
n L
= —%— + —f— (say) . (177)

If this approxinate form of the varlance is ninimized by choice

of n and L for a given cost of the form (171), it is easily found that

n acl‘}_%_
L 1 e | (178)

This equation with (171) serves to deternine n and L.

dxomplet This exemple is artifiéial, but will give some idea of
the calculations invclved. We use thé Jefferson, lowa, data previously
congidered (page 126). The g variate, form size, is to be used to
divide the populatiecn into two stratat farms up to 160 acres and farms
over 160 acres. Assume that it costs 10 times as much to sarmle for

corn acres (y) =8 for farn size (x), and let the cost be of the forn

0 =100 = 0,1L + n, (179)
This neans that if double sempling is not used (L = 0), we can afford
to toke o sample of 100 ferms to estinmate corn acres.

The rclecvant data for the population aresd

2

Strats W P
trota 3 % % 2y
1 ,'786 212 17.7 19.404
2 214 922 30,4 51,626
Conmplete 620 26,297

DOPe
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We find a = (2 WJ OJ)Z = 417,

= v ~2=
b Z‘Wd (yrj - yb) 175

o that -‘3—=/41"'—J:-=.8.
. L 175 10 4

From the cost equation (179) we obtain

100
+588

At this point we may verify that the neglected term in WJ(I-WJ) in

L = 170 ; n = 170x.488 = 83 .

(175) is in fact negligible. From (177) we then have

Vo =T+ 175 = .02 + 1.03 = 6.05
‘ 83 170

For a randon semple of size 100, with no double sampling, we would have

620
100

=

= 6.20

Fron this it appears that there would be only a trifling gain fron
double sanpling. ‘

10.3 Casc where the x vorinte is used for regression: In nost
of the applications that have mppeared in the literature, the x var-
iate has been used to meke a regression rather than a ratio estinmate.
For this rcoson the regression case will be discussed. We assume that

the population is infinite and that
y=a+8 (x—'ip) + e _ (180)

where ¢ hos nean zero and veriance oi = ci (1 -f?z). In the first
(1arge) sormplo, of size L, we measure only xi  in the second, of size

n, we ncasurc both x and y. The estimate of §§ is

Vag T Tg * O(FE) (181)

8
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where b is the least squares regression coefficient of y on x, com-
puted fron the small ssnple.
As an algebraic consequence of (180) it will be found that the
erroé of cstinmate

ze (x—;n)

VagTp = S+ GpoF) + 8 G- 3)

z (x—-xn)2

If we consider the x volues fixed in both the small and the large
sample, the last term on the right renains fixed and night be regardai

as a binss For fixzed x's, the variance

.2
(%, - xn)

E(yds:}; )2 = o? (1 ...fz)‘ N + g2 (}'L-Ep)z . (182)

P B z (x—in)a
As 1s typlcel of regression fornulae, the variance depends on the
sets of x values that happen to turn up. For comparison with other
sampling nethods, we wculd like an average variance in repeated sample
ing fron the same population, This average presents sone difficulty.
An averagc can be obtsined if we assune (i) that the large sanmple is
drawn nt rondom, (1i) that the small senple is a rendon sample drawn

fron the large semple and, (1i1) theot the x's are normally distributed.

2
8° o2
1 + ——% ,(183)
(n-3) L
which nzy be re-written

2 2 ' 2 2

(-,

o> (1~ L+ () 1 & . (184)
n L (n-3) L

The valuc of the average is

o

- - \2 2 2 1 /]_ 1
E - = 1-£ —=— e - o
(yds yp) . K (-£9 n \ L

If the x's arc nct normnlly distributed, the only ternm affected is
that in 1/(n-3), ns discussed previcusly on page 133. As regards
assurption (1i), it is rather unlikely that the snall sample would be

drawn at rondon from the large sample. Instead, we would usually
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draw the smell sample 80 as to obtain » wide spread in the values of
X, and s0 reduce the contribution from the sampling error of B. The
effect would be to reduce (perhaps considerably) the term in 1/(n-3);
the exact smount cof the reduction would require further investigation,
The best method of estimating the varisnce from a sample (or
rather the two ssmples) 1s likewise not toc clear., Formula (182) is
not usable as it stends. The sanmple mesan square deviation 83-1 from
the regression is an unbiased estinate of o: (1 —(’2). But we do not
know the value o: (;L '-gp)af It seems necessary to use the following

hybrid of (182) and (184).

) (EL -X )2 K;B o2
Veol (1-02 |1 + Lo« LY., (189)
v n T (x% )2 L
n
Since s° _ is on unblased estimate cf o= (1 —(’z) and since
YeX . v
2 . = \2
8y z (y - Yh) /(n-1)
is an unbinsed estinmate of oi,»it fcllows that
2 2 2 2
E haud = *
(sy sy.x) o
Hence, for a sanple estimate of the variance we can use
- w2 2 2
(%, = X)) (s5 - g
£ |2 "o y ¥ JeX (186)
TeX n z(x—in)z L

If the f.p.c. is intrcduced, this formula beccnes changed to

- =2
2 |71 (x - xp) _‘
. (..--__1__)4, L e (2§ __1_-__1.).(187)
Fex\ B N/ T (x-% )2 z vy Jex L N

n

v

A doveloprient of the thecry hns heen given by Chaneli Bose (47).

She notes that in some applicaticns the snell semple may be drawn
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quite scparately from the large sample. This changes the term in
S |
n L
(..1_ + L),
n L/

with a corresponding chenge in (184).

in €183) %o
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ADDITICNAL NOTES

These notes, which cover a few topics not discussed in preceding
sectiéns, are intended mainly to indicate further reading.

11.1 Zxtension of the general pringiple: The principle of maxie
mum accuracy for given cost, or minimum cost for given accuracy, is
not completely satisfactory. The principle assumes that in some way
either the cost or the accuracy is fixed in advance. Now the specifi-
cation of the desired degrece of accuracy usually involves some arbi-
trariness. If a coefficient of variation.of 1.5 percent is demanded,
tho sanplec will not be regarded aé useless should the coefficient turn
out to be 1.6 percent. ' The advance specification of a sum of money
that must bo spent on the samplo is also open to criticism, for the
accuracy obtaincd from this oxpenditure may bc substantially more, or
substantially lcss, than is needed for the use that is t§ be madé of
the estimates. Two attempts to utilize a more general principle, in
which optimun cost and optimum accuracy are determined simultaneously,
will be briefly described. |

In order to apply the principle, one must be able to answer the
question: Low much is a2 given degree of accuracy worth? Any decisions
that arc bascd on an estimate from a sample will presumably be more
fruitful if the estimate has a low error than if it has a high error.
In certain coscs we may be able to calculate, in monetary terms, the
loss 1 (z) that will be incurred in a decisioﬁ through an error of
anount z in the estinmate. Although the actual value of 2z 1is not
predictable in 5annce, soripling theery may enable us to predict the
froquency distribution p (z,n) of =z, which for a specified method of
saripling will depend on the size of sample n. Hence the gxpected loss

for a glven size of sample is
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L(n) = j&(z) p (z,n) dz.

The purpose in taking the sample is to diminigh this logs. If
C(n) is the cost of a sample of size n, clearly n should be chosen

80 as to nirinize

6(n) + L(n)

since this is the total cost involved in taking the sample and in
naking decisions from its results. Choice of n 80 as t0 mininize this
quantity will determine both the optimum amount of noney to be spent on
sarpling =nd the optimun aceuracy. The idea is presented here only in
its gimplest form: 1t may be extended to cover a cholce between differw.
ent sampling methods,

In tho application described by Blythe (48), the selling price of
a lot of standing timber is SV, where S5 1s the price per unit vol=-
unte, and V 1is the vclume of timber in the lot., The number N of
logs in the lct is counted, and the average volume per log is estinated
from a sarple of n logs. If o is the standard deviation per log for
the samyling method used, the standard deviation of the estimate of V
will be ¥ o /./M, (ignoring finite population correction).

Suppose that this estinate is made and paid for by the seller.
The buyer provisionally accepts the estimate of the amount of tinmber
which he has bought. Subsequently, however, he finds out the correct
volume nurchrscd, nnd the seller reinburses Qin if he has psid for
ricre thon was delivered, If ho hns paid for less than was Celivered,
the buyer docs nct nention the fact. In this situation the seller
loses whenever he underestinates the volume, but does not gain when he
overestinotes it. The situation is artificial, but serves to illus-

trate the epplicsticn of the principle to a case that does not requirec
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cormplex nathenotics. (This presentation is slightly different fron
that of Blythe).

When he underestimates the volume by an amount 2z, the seller
loseQ an anount Sz. Thus we may take 1(z) as zero when x is neg~
ative and as Sz when 2z 1is positive, where 2z 1is the anount of undecr-
estinntion. On the assumption of 2 normal distribution of sampling

errors, p(z,n) is the nornmal distribution with nean zero snd variance

ceo n 22
v B SN
L(n) = Sze " 5 2 dg= ——
J e Yo A < o N

If we supposc further that the cost of neasuring the vclune of a log is

¢, the cost function C(n) 4s cn. The quontity to be minimized is

v therefore

S N o

S =

Differcntiation with respect to n 1leads to the solution

ca +

Y =
_ [/ S¥o )3

\ch /

In the cxample dute to Nordin (49), a menufacturer takes a scmple

in order to estinnte the size of a market which he intends to enter.
If the size is known nccurately, the amocunt of fixed equipment and the
prcduction per unit period coan be adjusted so as to naximize expected
prcfit., Errcrs in the estimated size of market will result in choices
of thesc two foctors that f£all short of the optimun, nnd lesd to a
snoller cxpected profit, The ssmple size n  should therefore te such
that the oddition of an (n+1)th unit to the ssrple increases the
profit expectaticn by exactly the cost of the (n+l)th unit.

In nony coses it will be difficult to a7ply these ideas becouse

no way con be found to tronslete the effect of a sorpling error into
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nonetary terms, Morecver, an estinmnte nay be used by different persons
for quite diverse purposes. Nevertheless, the question of the standard
of accuracy nceded in sample estimates has received too little attention,
and this type of research may point in a fruitful direction.

il.z Arca gampling: All sampling methods for which we have pre-
sonted theory require something equivalent to a listing of the populae
tion, since this is needed to draw either randonm, stratified random or
Vevery k th" systematic samples. For nany types of population no liste-
ings arc avallable, and this inposes a serious handicap to the use of
theoretically-sound metﬁods. For the sampling of humon populations,
the method of grea gampling represents a najor achievement towards
overconing this difficulty.' The sampling unit is a compact areavof
land,‘uéually shown on a nap. These erers nre constructed so that they

completely cover the map which shows the population that is to bo
soripled. . In other words, a listing of the population into areas is
deliberately made.

In the Moster Sample of agriculture, designed primarily for farm

surveys, cvery ccunty in the United States has been divided in this
way into srens. These average sbout 2 1/2 square miles in ares and
centoin fren 4 t¢ 8 farns each on the avernage, thcugh these numbers
differ iﬁ different parts of the country end vary considerably for
individunl afcas. The next step, which presents difficulties, is to
devise rulcs such that each element in the population is clearly asso=
ciated with onc and only one ares. For instmce, if the population

is a pohulertion cf frrms, we require o rule such that every farn in
the pepulnticn 'telongs'to cne and only one.area. If this rule is
fcund, o rondon scrple of arecs provides a randen 'cluster' sanple of
farns. The rclevant thecry is that given in chapters 7 (type of
garpling unit) and 8 (subsanpling). Further, since the nurber of farms

per aren cannct conveniently be kept constant, it is usunlly found that
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ratio or regrcssion estimates involving the number of farms are nore
accuratc thon a sirple oxpansion by the ratio of the number of areas
in the population to that in the sarple.

In certnin parts of the country, the rule that the farm is asso-
clated with the arca on which the farnstead lies works feirly well,

Mere complex rules ere necded for cases where the farm has no farm~
stend, or whcre the farn consists of nultiple tracts. A sample of
areas con nlso be used, e.g., for surveys of rural housing, wherc the
populﬁtion bocones a population of houses rrther than of farms, and
changes in the rules are mafe accordingly. For a more detailed descrip-
tion, sec King and Jessen (50).

For somples 1nvolving visitation of houses in large towns, the
arenl unit is usunlly a city block, which cmn be cutlined on a city
nap. It is custcmary to stratify the blocks, and to utiiize subsarpling,
only o bcrtain fraction of the houses in a block that is selected being
visited. Thc method is discussed by Hansen nnﬁ Hauser (51): another
useful reforence is Hansen and Deming (52). |

11.3 Control of human errors: Mahalanobis (53) has described
a nunbor of devices used in his sanpling work in order to obtain infor-
nation on the extent cf human errors. One device is to have certain
sampling vnits enumerated twice by different workers (cr terms of
werkers), who do not know cn which units this duplication is to occur.
By neaons of 2 ¢  test one c¢~n exenine whether there is a consistent
diffcrence between the results for the two workers. & second dovice
is thc usc °f whet Mahalanobis calls "interpenetrating snmples". If
fcr instence there are four strata ond five teans, each tean might be
assizned to cnumeratc one-fifth of the units in each stratun. Fron

the results the fcllowing analysis cf variance can be corputed.
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d.f’
Between strata 3
Between teams 4

Interaction; strata x teams 12
Within teams between units -

From this analysis the presence of consistent differences among teams,
or of differences in individual strata, can be exanined. Of course,
if differcnces between teams exist, they enter into the real sarmpling
error of the estimate: the sampling error as calculated from the
stsndard fornulae given in previous chapters would be an underestimate.'

11.4 Descrivntion of ggtgg;‘sg;gexgz The following references
contnin accounts (in whole or in par£)‘ of actual surveys, and are
useful in studying the practicallapplication of sarpling techniques,

(54) Sempling Staff, Burcau of the Census. Ahgggﬁigg_y&jkumr
lation Sammling, U. S. Government Printing Office, Washington, D, C,
1947. A dotailed account of o sample which covered a fumber of large
cities, thec prinecipal obJect being to investigate overcrowding. A
stratificd sariple of city blocks was used, with subsanpling of the
blocks.

(38) Jessen, R. J., Blythe, R. H., Kempthorne, 0., and Dening,

W. Edwards. On o Population Sample for Greece. Jour. Aner, Stat.

Asso, 42, po. 357-384, 1947. A population sample extending over a

whqle count:ry where no previous sampling work had been done.

(55 Yates, F. and Finney, D. J. Statistical Problens in Field

Sanpling for Wire Worms. Ann., Appl., Biol., 29, pp. 156-167, 1942,

An cxtensive sarple of farn fields.

(66) Cornell, F. G. A Strotified Sample of n Snall Finite Pop-

ulntion. Jour, Aper. Stnt, Asso., 42, pp, 523-532, 1947. A nmaill
grriple of universitics and collezes in the U, S., in order to obtain

estinates of total enrollnents,
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(57) Blankenship, &. B, (Editor) How to Copduct Consumer and
Cpinion Reserrch. Harper and Bros., New York, 1946. An excellent

saource for information about many of the commerciel uses of sempling.

(58) Hondricks, W. A. Mothematics of Ssmpling. Va. Agr. Exp.

Sta. Specinl Tech. Bull,, 1948. This contsins a series of lecture

rotes covering approxinmately the same ground as the present notes,

end is highly rccommended as supplementary reading.
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